
¢

A Distributed Agent Architecture
for

Real-Time Knowledge-Based Systems

Final Report

Real-Time Expert Systems Project-
Phase I

S. Daniel Lee

Inference Corporation

May 1990

Cooperative Agreement NCC 9-16
Research Activity No. SE. 19

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

,-"4

p,. _"
¢'% u'l _j

I _ _'_

t.__¸

_J

"3 (."

_ "D 3..

C L C

L__ L t--" L! "

-) ;_ > 4_

P- "-' P _ L'
,') t.--, ,'. ',,-,, ."
t-_ I Cp C

'_"_ [., ,I- (.J

-' t" .,J K"

_c., _ _- "

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

A Distributed Agent Architecture
for

Real-Time Knowledge-Based Systems

Final Report

Real-Time Expert Systems Project
Phase I

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by S. Daniel Lee of Inference Corporation. Dr.

Charles McKay served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

A Distributed Agent Architecture

for

Real-Time Knowledge-Based Systems

Final Report, Real-Time Expert Systems Project - Phase I

prepared for

Research Institute for" Computing and Information System (RICIS)

University of Houston - Clear Lake (UHCL)

and

NASA Johnson Space Center (JSC)

under

Subcontract 015

RICIS Research Activity SE.19

NASA Cooperative Agreement NCC-9-16

S. Daniel Lee

Inference Corporation

5300 W. Century Blvd.

Los Angeles, CA 90045

May 1990

J

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

Table of Contents

1. Introduction

2. Advanced Automation Projects for NASA's Space Station Freedom

2.1 Current Projects

2.1.1 Operations Management System

2.1.2 Electrical Power System

2.1.3 Thermal Control System

2.1.4 Environmental Control and Life Support System

2.1.5 Summary

2.2 Requirements for Future Projects

3. Intelligent Real-Time Problem Solving Arehltectures

3.1 Current IRTPS Architectures

3.1.1 DVMT

3.1.2 Guardian

a.l.a Phoenix

3.1.4 PRS

3.1.5 RT-1

3.1.6 SO.MR

3.1.7 Summary

3.2 Problems in Current Architectures

4. Distributed Agent Architecture

4.1 Technical Objectives

4.2 Design Overview

4.3 Reactive Agents

4.4 Cognitive Agents

4.5 A Meta-Level Agent

4.6 Interagent Communication

4.7 APEX Testbed

5. Future Work

6. Conclusion

References

I. Ada-Based Expert System Tools

1.1 Commercial Tools

I. 1.1 ART-Ada

1.1.2 CHRONOS

1.1.3 Classie-Ada

1.1.4 CLIPS/Ada

1.1.5 Summary

1.2 Research Tools

1.2.1 ABLE

1.2.2 ARTIE

1.2.3 ERS

1

3

3

3

,t

5

6

6

6

8

8

8

9

9

10

10

11

11

12

13

13

13

14

16

17

18

19

22

23

24

32

32

32

34

34

34

34

35

35

35

36

i

__ A DISTRIBUTED AGENT ARCHITECTURE FOR I{EAL-TIME KNOWLEDGE-BASED SYSTEMS

1.2.4 FLAC

1.2.5 KEE/Ada

1.2.6 MeriTool

1.2.7 Other Related Work

II. A Proposal for Real-Time Extensions to ART-Ada

II.1 Introduction

II.2 Performance Monitoring and Tuning

II.3 Temporal Reasoning and Trend Analysis

II.3.1 Monitors

II.3.2 Events

II.a.a Timers

II.4 Dynamic Rule Priority

II.5 Message Passing between Distributed Expert Systems

II.6 Other Issues

II1. Feedback from Review Meetings

III.1 Introduction

III.2 Meeting with the Communications and Tracking Group

III.3 Meeting with NIITRE

III.4 Meeting with Ford Aerospace and IBM

III.5 Meeting with McDonnell Douglas

III.6 Conclusion

36

36

37

37

38

38

38

39

39

40

41

42

42

43

44

44

44

45

46

47

47

ii

-- A DISTRIBUTED AGENT _M_CHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure I-l:

List of Figures

Distributed Agent Architecture for real-time

systems

Current APEX

APEX based on Distributed Agent Architecture

Overview of ART-Ada

knowledge-based 14

19

20

33

o..

111

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

List Of Tables

Table 2-1:

Table 3-1:

Table I-1:

Selected Advanced Automation Projects for SSF

Selected IRTPS Architectures

Commercial Ada Tools

6

11

35

iv

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

1. Introduction

The current, ongoing work of Inference, the "Real-Time Expert Systems" project for

NASA Johnson Space Center, under a subcontract to the University of Houston - Clear

Lake, has provided valuable insights into requirements for real-time knowledge-based

systems being developed for NASA's Space Station Freedom. NASA's Space Station

Freedom is an example of complex systems that require both traditional and AI real-

time methodologies. The standard on-board processor on the Station is an 80836-based

workstation with limited memory. In the ground-based control center, on the other

hand, conventional engineering workstations can be used for AI applications. It has also

been mandated that Ada should be used for all new software development projects.

The Station also requires distributed processing. For example, if expert systems for

fault detection isolation and recovery (FDIR) for the Station were fielded only in the

ground-based control center, communication delays could cause serious problems.

Catastrophic failures on the Station can cause the transmission system to malfunction

for a long period of time, during which ground-based expert systems cannot provide any

assistance to the crisis situation on the Station. This is even more critical for other

NASA projects that would have longer transmission delays (e.g. the Lunar base, Mars

missions, etc.)

However, current real-time knowledge-based system architectures suffer from a variety

of shortcomings:

• A heavy dependence on inefficient implementation platforms, usually Com-

mon Lisp, which makes it difficult if not impossible to be deployed in real-

time embedded systems.

• A weak integration with traditional real-time computing methodologies.

• An inability for the architectures to be distributed among multiple

heterogeneous platforms that communicate asynchronously.

We have, previously, implemented an Ada-based expert system tool, ART-Ada, to

facilitate the deployment of expert systems in Ada, which addresses the first point

above [Lee & Allen 89], [Lee & Allen 90], [Lee 90].

We propose a distributed agent architecture (DAA) that can support a variety of

paradigms based on both traditional real-time computing and artificial intelligence.

DAA consists of distributed agents that are classified into two categories: reactive and

cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time

requirements and to be deployed on on-board embedded processors. A traditional real-

time computing methodology under consideration is the rate monotonic theory that can

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

guarantee sehedulability based on analytical methods [Sha 89], [Sha & Goodenough .90].

AI techniques under consideration for reactive agents are approximate or "anytime"

reasoning that can be implemented using Bayesian belief networks as in

Guardian [Hayes-Roth et al 89], [Hayes-Roth 89]. Fuzzy logic [Lim & Takefuji

90], [Zadeh 88], [Togai & Watanabe 86] and reactive planning [Agre & Chapman

87], [Drummond 88], [Kaelbling 88], [Nilsson 89], [Sehoppers 87] are also being con-

sidered for reactive agents.

Cognitive agents are traditional expert systems that can be implemented in ART-Ada

to meet soft real-time requirements. During the initial design of cognitive agents, it is

critical to consider the migration path that would allow initial deployment on ground-

based workstations with eventual deployment on on-board processors. ART-Ada tech-

nology enables this migration while Lisp-b_ed technologies make it difficult if not im-

possible.

In addition to reactive and cognitive agents, a meta-level agent would be needed to

coordinate multiple agents and to provide meta-level control. An important area of

coordination is timeline management. Following [Ash & Hayes-Roth 90], we intend to

implement three timelines--- occurred, expected, and intended --- where each timeline

records one type of information. Any agents can process or post events in any timelines

through the meta-level agent.

The proposed testbed for DAA is APEX (Autonomous Power EXpert), which is a real-

time monitoring and diagnosis expert system for the electrical power distribution system

of NASA's Space Station Freedom [Truong et al 89], [Waiters et al 90]. APEX was

previously implemented in KEE and Common Lisp and is being ported to ART-Ada

and Ada at NASA Lewis Research Center. The main purpose of the APEX testbed is to

demonstrate the advantages of DAA.

2

- ,.\ DISTI_,IBUTED AGENT ARCHITECTURE FOR REAL-TIME R:NO\VLEI)(_E-BASED SYSTENIS

2. Advanced Automation Projects for NASA's

Space Station Freedom

Advanced automation projects for NASA's Space Station Freedom have been initiated

due to special interests from Congress [Dominick et al 89]:

Congress has displayed substantial interest in accelerating the dissemination

of advanced automation technology to and in U.S. industry. Space Station

was selected as the high-technology program to serve as a highly visible

demonstration of advanced automation, and spur dissemination of the tech-

nology to the private sector.

2.1 Current Projects

In this section, selected advanced automation projects for the Space Station Freedom

are summarized, mainly from the proceedings of the third annual workshop on Space

Operations Automation and Robotics (SOAR '89) and [Bayer 89].

2.1.1 Operations Management System

[Taylor & Hansen 89] describes OMS as follows:

The Space Station Freedom Program (SSFP) Operations Management Sys-

tem (OMS) is a set of functions which includes application software and

manual interactions with the Freedom Station either from onboard or on the

ground. OMS requirements have been organized into five task groups: 1)

Planning, Execution and Replanning, 2) Data Gathering, Preprocessing and

Storage, 3) Testing and Training, 4) Resource Management, and 5) Caution £_

Warning and Fault Management for onboard subsystems.

A prototype FDIR (fault detection isolation and recovery) system for OMS is being

developed in two phases: the development of an onboard communications network

FDIR system and global FDIR for onboard systems [Taylor & Hansen 89]. OP883 and

C++ are being used for the prototype. The user interface of the prototype is being

constructed using TAE+.

Another prototype implements a proof-of-concept for a subset of the onboard OMS

software, the Operations Management Application (OMA)[Kelly et al 89]. This

prototype was ported from a Lisp and Symbolics environment to a VAX environment.

The OMA prototype has two components, the Procedures Interpreter (PI) and the In-

tegrated Status Assessment (ISA).

The PI demonstrates the role automation plays in intelligent commanding

and monitoring of space station system operations as well as interactive sup-

port functions for the crew. The PI accepts procedures (formal, English-like

3

-- A DISTRIBUTEDAGENT,M{CHITECTL_E FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

definitions for crew activities) as input. This procedure is provided to an en-

gine that carries out the formulation and issuance of commands to be sent to

the systems being affected. The PI receives and monitors status and con-

figuration from the simulations. With this information, the PI maintains a

"context monitor", to track the progress of the procedure. Concurrently,

flight rules are enforced as required by the current operation. The PI takes

action when an activity violates flight rules in the context of the current

operation.

The ISA prototype is a rule- and model-based expert system that

demonstrates Space Station Freedom fault detection and isolation. The ISA

consists of a knowledge base, an inference engine, and a user interface. The

knowledge base encompasses facts and rules. The facts contain a high level

qualitative model of Space Station Freedom systems. The rules consists of

generic fault isolation knowledge and system specific knowledge to determine
the source of faults.

Originally, the ISA prototype was written in Lisp and OPS5. It was ported to C and

CLIPS/C later. MITRE plans to port ISA to Ada using ART-Ada. The PI was ported

from Lisp to Ada using the Operations and Science Instrument Support (OASIS)

software, an Ada package written at the University of Colorado at Boulder [Jouchoux et

al 87]. The ISA and the PI are integrated using VMS interprocess communication ser-
vices.

2.1.2 Electrical Power System

APEX [rruong et al 891, [Waiters et al 901 and SSM/PMAD [Walls & Lollar 891 are

being developed for the electrical power system of the Space Station. [Waiters et al

90] describes APEX as follows:

The Autonomous Power Expert (APEX) system has been designed to

monitor and diagnose fault conditions that occur within the Space Station

Freedom Electrical Power System (SSF/EPS) Testbed. The ,_'EX system is

being developed at the NASA Lewis Research Center APEX is designed to

interface with SSF/EPS testbed power management controllers to provide en-

hanced autonomous operation and control capability.

The APEX architecture consists of three components: (1) a rule-based ex-

pert system, (2) a testbed data acquisition interface, and (3) a power scheduler

interface. Fault detection, fault isolation, justification of probable causes,

recommended actions, and incipient fault analysis are the main functions of

the expert system component. The data acquisition component requests and

receives pertinent parametric values from the EPS testbed and asserts the

values into a knowledge base. Power load profile information is obtained

from a remote scheduler through the power scheduler interface component.

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

APEX was originally written in KEE and Lisp and being ported to ART-Ada and Ada
at NASA Lewis ResearchCenter.

[Walls & Lollar 89] describesSSM/PMAD as follows:
The Space Station Module Power Management and Distribution

(SSM/PMAD) Breadboard, located at NASA's Marshall SpaceFlight Center
(MSFC) in Huntsville, Alabama, models the power distribution within a Space
Station Freedom Habitation or Laboratory module.... Three cooperative Ar-
tificial Intelligence (AI) systems manage load prioritization, load scheduling,
load shedding, and fault recovery and management.... FRAMES (Fault
Recovery And Management Expert System) monitors the system for
anomalies. Maestro is a resourcescheduler which can create a schedulebased
on multiple constraints. The LPLMS (Load Prioritization List Management
Scheduler) keeps up with the dynamic priorities of all payloads and develops
load sheddinglists for contingencieswhich require load shedding.

FRAMES was implemented in Common Lisp and the Common Lisp Object System
(CLOS) on a Xerox 1186workstation. Maestro and LPLMS were written in Common
Lisp on a SymbolicsLisp workstation.

2.1.3 Thermal Control System

[Dominick et al 89] describesTEXSYS asfollows:

The NASA SystemsAutonomy Demonstration Project (SADP) was initiated
in response to the above stated Congressional interest for Space Station
automation technology demonstration. The SADP is a joint cooperative effort
between Ames Research Center (ARC) and Johnson Space Center (JSC) to
demonstrate advanced automation technology feasibility using the SpaceSta-
tion Freedom Thermal Control System (TCS) test bed.... In responseto the
TCS challenge, the project's expert system technology development has been
concentrated in the following areas: (1) integration of knowledge-basedsys-
tems into a complex real-time environment; (2) causal modeling of complex
componentsand elements through representation of first principles, quantita-
tive models, and qualitative models in the knowledge-base;(3) use of com-
bined model-based and rule-based reasoning; and (4) use of trend analysis
heuristic rules....

This research has lead to the development and use of a multi-purpose
Model Toolkit (MTK) and Executive Toolkit (XTK) for model-basedexpert
systems. Thesetools were usedto create TEXSYS (Thermal EXpert SYStem)
... that performs actual control of a system as well as conducting monitoring
and fault diagnosis.

5

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

TEXSYS is developedon top of MTK and XTK, which are written in KEE and Con>
mon Lisp. [Bayer 89] further describesMTK as follows:

MTK is a utility package developed for use with the IRE expert system
development tool to provide support for model-based reasoning... MTK was

originally inspired by the tool SIMKIT and includes capabilities similar to

that package, but with additional extensions and enhancements. MTK is

built on top of KEE version 3.1 and is closely integrated with a number of

KEE utilities that provide basle support for a number of MTK functions.

2.1.4 Environmental Control and Life Support System

[Dewberry 89] discusses the advanced automation project for Environmental Control

and Life Support System (ECLSS). In particular, a diagnostic prototype of the Potable

Water Subsystem is described in [Lukefahr et al 89]. This system is implemented in

CLIPS/C and Hypereard on an Apple Macintosh computer, and will be ported to ART-
Ada.

2.1.5 Summary

Selected advanced automation projects for the Space Station Freedom are summarized
in table 2-1.

System Organ. SSF Module Initial Prototype Porting

ISA MITRE OMS OPS5/Lisp & CLIPS/CART-Ada

FDIR Ford OMS OPS83/C++

APEX LeRC Electrical Power KEE/Lisp ART-Ada

SSM/PMAD MSFC Electrical Power CLOS/Lisp ?

TEXSYS _ARC/JSC Thermal Control MTK/KEE/Lisp ?

PWS MSFC ECLSS CLIPS/C ART-Ada

Table 2-1: Selected Advanced Automation Projects for SSF

2.2 Requirements for Future Projects

Several prototype expert systems have been developed for testbed environments at

various NASA centers. Most of these systems are developed in Lisp environments in-

itially, and some of them are being ported to Ada environments using ART-Ada. We

believe that future expert systems for the Station should be designed with the following

requirements:

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

• A clear migration path should be defined so that they be deployed on the
ground-based control center initially but be migrated to the Space Station
eventually.

• Distributed and cooperative processingis essential. Consider the following
scenario:

1. Initially, all modulesof an expert system are deployed on the ground.

2. As they mature, somemodulesare migrated to the Station.

In step 2, somemodulesare on the Station and someare on the ground, and
distributed, cooperative processingoccurs between the onboard modulesand
the ground modules. It is also important to note that expert systemsin the
control center would never become obsolete due to the migration. The
ground controllers would have to useexpert systemsregardlessof the migra-
tion.

•Ada should be used as early as possibleduring the project so that minimum
effort be wasted porting from one environment to another.

The architecture proposedin this report will addresstheseissues.

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

3. Intelligent Real-Time Problem Solving
Architectures

In 1989, the Air Force launched a new research initiative focused on Intelligent Real-

Time Problem Solving (IRTPS). As part of IRTPS phase II, a workshop was held in

Santa Cruz, California, November 6 and 7, 1989. In the preface of the workshop

report, the goal of this research initiative is explained [Erman 90].

The state of the art in real-time AI systems lags far behind the needs of the

applications requiring this technology. Current researchers view this technol-

ogy as being at least one generation behind the expectations for real-time ap-

plications, the computational requirements of which are increasing in com-

plexity faster than the speed of today's processors. Current problem-solving

technology does not meet the expected stringent requirements for predictable

and high quality results achieved in a timely manner in the presence of exces-

sive demands for resources, where response time and computing resources are

limited and varying, focus of attention shifts frequently, large amounts of in-

formation must be managed under severe time constraints, data and

knowledge uncertainties exist, and goals conflict.

Many current and proposed programs throughout DoD and the Air Force

will require Intelligent Real-Time Problem Solving (IRTPS) capabilities. As a

consequence, the Air Force needs to increase the national focus on IRTPS

throughout the computer science community, including those segments in-

volved with AI approaches to problem solving, software engineering for tradi-

tional real-time systems, decision analysis, and control theory.

\Ve believe that the Space Station Freedom program, and other manned and un-

manned programs throughout NASA also require IRTPS capabilities. Although the

problem domains are different from those of the Air Force, many NASA applications

also have to deal with issues related to real-time problem solving cited above.

3.1 Current IRTPS Architectures

In this section, selected architectures for IRTPS are summarized mainly from the

IRTPS workshop report [Erman 90].

3.1.1 DVMT

[Erman 90] summarizes DVMT as follows:

The Distributed Vehicle Monitoring Testbed has been developed at the

University of Massachusetts since 1978. Its blackboard architecture has been

extended with incremental planning control. This architecture extends tradi-

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

tional blackboard systems by incorporating a sophisticated planner to control

the problem-solving activity. The planner uses approximate processing tech-

niques to hypothesize possible solutions to pursue/refute, and plans knowledge

source actions to efficiently perform this pursuit/refutation. This planning

can incorporate time constraints by replacing time-consuming actions with less

time-consuming (or no) actions, to achieve problem-solving deadlines at the

price of reduced solution quality. The control mechanism are built on top of

the GBB (Generic Blackboard) shell, available from the University of Massa-
chusetts.

See [Lesser et al 88] for details.

3.1.2 Guardian

Guardian is a patient monitoring and diagnosis system in a surgical intensive care

unit [Hayes-Roth 89], [Hayes-Roth et al 89], [Ash & Hayes-Roth 90], [Washington &

Hayes-Roth 90], [Washington et al 90], [Washington & Hayes-Roth 891, [Collinot &

Hayes-Roth 90]. It is based on BB1 [Hayes-Roth 881, [Garvey et al 87J, [Uewett 88].

Guardian runs in Common Lisp on multiple TI Explorers. [Hayes-Roth 89] describes a

generic IRTPS architecture in the Guardian system as follows:

The proposed architecture is a blackboard architecture, whose key features

include: distribution of perception, action, and cognition among parallel

processes, limited-capacity I/O buffers with best-first retrieval and worst-first

overflow, dynamic control planning, dynamic focus of attention, and a satis-

tieing execution cycle. Together, these features allow an intelligent agent to

trade quality for speed of response under dynamic goals, resource limitations,

and performance constraints.

3.1.3 Phoenix

Phoenix is described in [Cohen et al 89] and also summarized in [Erman 901 as follows:

Phoenix is a real-time, adaptive planner that manages forest fires in a simu-

lated environment. Alternatively, Phoenix is a search for the functional

relationships among the designs of agents, their behaviors, and the environ-

ments in which they work. In fact, both characterizations are appropriate

and together exemplify a research methodology that emphasizes complex,

dynamic environments and complete, autonomous agents. The Phoenix

group, at the University of Massachusetts, is empirically exploring the con-

straints the environment places on the design of intelligent agents The

Phoenix system comprises five levels of software: Discrete Event Simulator

(DES), Map, Basic Agent Architecture, Agents and Agent Organization. The

DES creates the illusion of a continuous world, where natural processes and

agents are acting in parallel, on serial hardware. The Map level contains the

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

data structures that represent the current state of the world as perceived by
agents as well as the "world as it really is" and the methods that update the
state of the world. The basic agent architecture provides the structure for
sensors,effeetors, reflexes and problem solving capabilities. The agent level
describesthe agents that we have designedfor the Phoenix environment of
forest fire fighting. The organization level includes a hierarchical organization
of agents in which one firebossdirects multiple agents. The Phoenix environ-
ment (the DES and map level), the basic agent architecture and the agents
with organization are independent software packages available for other
researchers. The systemruns in Common Lisp with Flavors on a TI Explorer.

3.1.4 PRS

PRS is described in [Georgeff & Ingrand 89a] and [Oeorgeff & Ingrand 8Ob]and also
summarized in [Erman 90] as follows:

The Procedural ReasoningSystem (PRS) is a generic architecture for real-
time reasoningand acting that has beendevelopedat SRI. PRS is capable of
operating efficiently in continuously changingenvironments. It can both per-
form goal-directed reasoningand react rapidly to unanticipated changesin its
environment. It includes recta-level reasoning capabilities, which can be
tailored by the user, employing the same languageused to describe domain-
level reasoning. PRS has beenapplied to various tasks, including malfunction
handling on the NASA spaceshuttle, threat assessment,and the control of an
autonomous robot.

3.1.5 RT-1

RT-1 is describedin [Dodhiawala et al 89] and also summarized in [Erman 90] as fol-
lows:

RT-1 is a small-scale, coarse-grained, distributed, event-driven architecture

based on the blackboard paradigm. It consists of a collection of reasoning

modules which share a common blackboard data space and operate

asynchronously. Each reasoning module has 3 processes: the I/O process for

inter- and intra-module communication, the blackboard demon process for

asynchronous blackboard maintenance operations, and the reasoning process

which performs the knowledge processing actions for the reasoning module.

The main features of the reasoning process are: multiple, prioritized event

channels for improved responsiveness to more critical events, explicit recta-

level reasoning capability which permits opportunistic performance between

the extremes of completely reactive to completely goal-directed according to

changing workload and priorities. Thus, RT-1 addresses the responsiveness,

timeliness, and graceful adaptation aspects of real-time as defined in

[Dodhiawala et al 89]. RT-1 has associated with it measures and metrics that

help evaluate the performance of the system.

10

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

3.1.6 SOAR

SOAR is described in [Laird et al 87] and also summarized in [Erman 90] as follows:

Soar is an AI architecture that combines a recognition-driven memory (a

production system), the ability to interact directly with sensors and effectors,

a decision cycle driven by the system's knowledge and perceptions, the ability

to automatically generate subgoals, and the ability to learn from experience.

Soar is written in Common Lisp, and runs on a variety of machines (Sun 3 &

4, DEC VAX & 3100, IBM RT, TI Explorer, ...), in Common Lisps provided

by several different vendors.

We have implemented a subset of Soar capabilities in ART-Ada. The learning

capability called chunking was not included in the ART-Ada implementation. Only a

small example (monkeys and bananas) was tested in this implementation. A translator

was built to translate the original Soar programs to the ART-Ada version. The trans-

lator does not complete the translation, however. The output of the translator must be

modified manually to complete the translation.

Soar is an interesting AI problem soiving architecture, but the current architecture

does not address any real-time issues. Although we are aware of the research effort to

develop a newer version of Soar based on neural networks (a.k.a. Neuro-Soar), we have

not seen any publications on Neuro-Soar. If available, Neuro-Soar would probably ad-

dress many real-time issues which have not been addressed by the current version.

3.1.7 Summary

Selected IRTPS architectures are summarized in table 3-1.

IRTPS architectures are implemented in Lisp.

As shown in this table, all

System Organ. Application Implement.

DVMT UMass iVehicle Monitoring GBB/Lisp

Guardian Stanford Patient Monitoring BB1/Lisp

Phoenix UMaas Fire Fighting Flavors/Lisp

PRS SRI Space Shuttle Monitoring Lisp

RT-1 !FMC Pilot's Associate GBB/Lisp

SOAR CMU Many Lisp

Table 3-1: Selected IRTPS Architectures

11

w A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

3.2 Problems in Current Architectures

As pointed out in the introduction, most existing IRTPS architectures are basedon
Lisp. Lisp-basedimplementations usually require garbage collection, which is not good
for real-time systems. Researchactivities in conventional real-time areasfocus on more
conventional programming languagessuch asAda rather than Lisp.

Most of thesearchitectures are basedon distributed processing. Agents are often dis-
tributed over multiple processors. The reasoning component of these architectures,
however, is usually located on a single processor. For example, although the Guardian
system is distributed over multiple TI Explorers, its reasoning component is a
blackboard-basedsystem that residesin a single TI Explorer.

In the next chapter, we will proposea distributed agent architecture (DAA) that over-
comes these shortcomings and meets requirements for SSF advanced automation
projects discussedin the previous chapter.

12

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

4. Distributed Agent Architecture

4.1 Technical Objectives

A distributed agent architecture (DAA) is designed to support real-time knowledge-

based systems for the Space Station Freedom. DAA has the following technical objec-

tives:

The overall system performance should satisfy real-time requirements. On-

board systems should prevent catastrophic failures during the absence of as-

sistance from ground-based systems due to the malfunction of communica-

tion systems.

• Onboard systems should adapt gracefully to dynamic environments by trad-

ing quality for speed of response.

The architecture should be based on distributed and cooperative processing,

which will enable migration of knowledge-based system modules from

ground-based systems to onboard systems.

Its baseline implementation language should be Ada. Ada will make it pos-

sible to employ traditional real-time computing methodologies and to deploy

knowledge-based systems in embedded systems. If both ground systems and

onboard systems are implemented in Ada, it would be easier to migrate

modules from ground to the Station. Inference has, previously, implemented

an Ada-based expert system tool, ART-Ada, to facilitate the deployment of

expert systems in Ada [Lee & Allen 89], [Lee & Allen 90].

4.2 Design Overview

The distributed agent architecture (DAA) for real-time knowledge-based systems is

• depicted in figure 4-1. Other architectures that are similar to DAA are

Guardian [Hayes-Roth et al 89], [Hayes-Roth 89] and Phoenix [Cohen et al 89]. Al-

though the idea of classifying agents into two categories --- reactive and cognitive --- is

inspired by Phoenix, DAA is more closely modeled after Guardian mainly because the

domain of the proposed DAA testbed application (APEX) is closer to that of

Guardian's. There are differences between Guardian and DAA, however:

• Although Guardian is distributed over multiple processors, its reasoning

component based on BB1 [Hayes-Roth 85] runs on a single processor. In

DAA, the reasoning component itself is distributed over multiple agents;

reactive agents and cognitive agents. Reactive agents may be physically

separated from cognitive agents by thousands of miles.

13

- A DISTRIBUTEDAGENT,M:_CHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

Reactive
Agent

I ReactiveAgent Agent

Meta-k

Agent

IPrepr°ceuorl I Driver

t
Sensor Effector

_gent

Figure 4-1: Distributed Agent Architecture for real-time knowledge-based systems

• The proposed implementation language for the DAA testbed is Ada while

Guardian is implemented in Common Lisp. It is possible, however, that C-

or Lisp-based implementations are included as cognitive agents in DAA.

4.3 Reactive Agents

Reactive agents are designed to meet hard real-time requirements. Hard real-time re-

quirements are different from soft real-time in that if hard deadlines are not met,

catastrophic failures are likely to occur. Catastrophic failures include the loss of human

lives, the loss of major hardware components, etc. On the other hand, even if soft

deadlines are violated, no major catastrophic failures are likely to occur.

It is also critical that reactive agents fit into embedded processors of the Space Station

Freedom. Some AI tasks can be directly implemented in a procedural language such as

Ada. The use of Ada will enable us to take advantage of recent progress that has been

made in the area of real-time computing in Ada. A noteworthy example is the rate

monotonic theory that can guarantee schedulability based on analytical methods [Sha

89], [Sha & Goodenough 90].

The rate monotonic theory guarantees schedulability of multiple tasks if certain con-

ditions are satisfied. There are some restrictions, however:

14

-- A DISTRIBUTED AGENT ,_RCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

• The execution time of a task must be known because it is a parameter in

conditions that must be satisfied.

• It assigns the highest priority to a periodic task with the shortest period.

Therefore, it prevents tasks from having priorities base(| on other criteria.

• The theory applies only to multiple tasks --- periodic and aperiodic --- that

reside on a single processor. SEI (Software Engineering Institute) is cur-

rently working on the multi-processor version of the rate monotonic theory.

It is not clear whether the theory can be used for dynamic scheduling. It is usually

used before the program execution to determine whether deadlines could be met. If

deadlines are not met, periods of periodic tasks must be adjusted properly. We believe

that the theory can be used to adjust periods dynamically if they are allowed to change

dynamically. The theory does not prescribe how to find periods that would meet the

deadlines, however.

With the right Add runtime executive that supports rate monotonic scheduling, the

schedulability can be guaranteed in advance by applying the theory analytically. It is

expected that the Add 9X Project will incorporate the rate monotonic algorithm in the

next revision of the Add language, which is due for release in 1993.

An AI technique that is useful for reactive agents is approximate or "anytime" reason-

ing. For example, Guardian uses a Bayesian belief network to provide reactive diag-

nosis. Each node of a Bayesian belief network is associated with an action. When a

deadline is reached, Guardian simply recommends the action associated with the current

node. If more time is given, it will continue to refine its belief and may recommend a

conflicting action later on. We plan to implement an approximate reasoning module

based on Bayesian belief networks in Add.

Fuzzy logic-based systems [Lira & Takefuji 90], [Zadeh 88], [Togai & Watanabe 86]

can also be used as reactive agents, using either modeling software or fuzzy hardware.

In fact, fuzzy logic may subsume probabilistic reasoning using Bayesian belief networks.

Fuzzy systems are becoming popular in Japan [Schwartz 90]. Togai InfraLogic, Ine in

Irvine, California manufactures fuzzy-system chips and modeling software written in

C. Fuzzy systems are suitable for reactive agents because:

• Real-time response can be achieved by implementing the logic on a chip.

• Fuzzy logic allows approximate reasoning.

Various reactive planning methods have been proposed [Agre & Chapman

87], [Drummond 88], [Kaelbling 88], [Nilsson 89], [Sehoppers S7]. These planning

methods (a.k.a. universal planning) have been sharply criticized mainly for the exponen-

15

-- A I)ISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEIvlS

tial growth of their size with the complexity of the domain [Ginsberg 89]. We plan to

study both sides of arguments and investigate the possibilities of implementing reactive

planning agents using some of these methods in DAA.

4.4 Cognitive Agents

Cognitive agents are traditional knowledge-based systems that are designed to meet

soft real-time requirements. AI problems such as diagnosis demand accuracy of solution

within a soft deadline rather than sacrifice of solution quality to meet a hard deadline.

While reactive agents address the latter through approximate reasoning, cognitive

agents should be based on AI techniques that facilitate deeper reasoning. For example,

in Guardian, model-based reasoning is used for cognitive diagnosis while a Bayesian

belief network is used for reactive diagnosis.

Although AI systems usually run on a ground-based engineering workstation today, it

is becoming increasingly important that these systems are readily available in real-time

embedded environments. Some examples are:

• The Pilot's Associate (PA) project for automation of the military combat

aircraft cockpit,

• The Submarine Operations Automation System (SOAS) project, and

• NASA's manned and unmanned space programs.

Inference has already developed ART-Ada, an Ada-based expert system tool, for this

specific purpose. ART-Ada supports rule-based reasoning as well as frame-based

reasoning that can be used to implement model-based reasoning. When the current ver-

sion of ART-Ada is used, the total memory requirement for an ART-Ada application

with hundreds of rules is 2-3 megabyte. It may be reasonable for embedded systems

based on newer processors such as the Intel 80386 and 80960, the Motorola 68000 and

88000, and the MIPS RISC chip. It is important, however, to note that the current ver-

sion of ART-Ada is not optimized. The primary focus of the current release was to

provide functionality. Inference plans to release an optimized version of ART-Ada in

the near future.

While Ada compilers are improving, they still have not reached the maturity of C

compilers. In fact, because of numerous bugs found in the Ada compilers used for this

project, we could not make some of the obvious performance optimizations that could

have made ART-Ada faster and smaller [Lee 90]. For example, the bit-level represen-

tation clause and pragma pack in the Verdix Ada compiler prevented us from optimiz-

ing the size of data structures.

In addition to compiler problems, we also discovered some fundamental issues with the

16

-- A DISTRIBUTEDAGENTARCttITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

Ada language itself that also affected the performance of ART-Ada [Lee 90]. In par-
titular, the problem with dynamic memory managementhas the most significant impact
on the executionsize and performanceof ART-Ada.

Due to the dynamic nature of expert systems, it is necessaryto allocate memory
dynamically at runtime in ART-Ada and ART-IM. The direct use of new and

unchecked deallocationis the only dynamic memory management method available in

Ada. The problem with this method is that new incurs a fixed overhead associated with

each call and it is called very frequently to allocate a relatively small block for an in-

dividual data structure. It results in a performance penalty in size and the slower ex-

ecution speed. This is also aggravated by the poor implementation of new in the Ada

compiler.

The existing Ada features, new, unchecked_deallocation, and unchecked_conversion,

are too restrictive and totally inadequate for a complex system that requires efficient

memory management. More flexible features (perhaps in addition to the existing ones)

should be provided. This is particularly important in embedded system environments

that impose a severe restriction on the memory size. We believe that these issues should

be considered for the Ada 9X standard. In fact, they have been presented to several

members of the Ada 9X Project in a meeting held in Washington, D.C. in March, 1990.

However, the revised Ada language will not be available until 1993 or later.

Our future research effort will be focused on implementing ART-Ada's own memory

manager using an existing technology. If it is not possible to implement it in Ada, we

will implement it in an assembly language. ART-Ada has an Ada code generator, which

generates Ada code that relies on new and unchecked deallocation. We will have to

redesign the code generator to make it compatible with the new memory manager.

One of the Pilot's Associate teams lead by McDonnell Aircraft Company has success-

fully used Inference's Lisp-based expert system tool (ART TM) in the earlier phases. They

are currently evaluating ART-Ada in consideration for the next phase. As part of the

evaluation, they have proposed some enhancements for ART-Ada to improve real-time

support. These enhancements are mainly in the area of dynamic rule scheduling. A

brief discussion of a wish list compiled by McDonnell Aircraft Company and a proposal

for real-time extensions to ART-Ada is included in Appendix II.

4.5 A Meta-Level Agent

In a distributed architecture like DAA, the problem is how to provide meta-level con-

trol and coordination between distributed agents. A meta-level agent can be viewed as

a common blackboard for meta-level control and coordination. Some examples of meta-
level control are:

17

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

to control the data input rate of the preprocessor --- when a serious problem

arises, the input data rate can be reduced so that agents spend more

resources in dealing with the current situation;

to assign tasks to agents --- crisis situations may have to be handled by reac-

tive agents to provide quick fixes while cognitive agents may follow up on it

later;

to reconcile conflicting recommendations --- when reactive agents and cog-

nitive agents make conflicting recommendations, it is necessary to reconcile

the differences; and

• to schedule operations for effectors --- when multiple agents try to control

effectors, it is necessary to schedule effector assignments.

Another important area of coordination is timeline management. Following [Ash &

Hayes-Roth 90], we intend to implement three timelines where each timeline records one

type of information. The occurred timeline is used for representing facts acquired from

monitoring sensors. The expected timeline represent what we expect in the future. The

intended timeline represents goals. The intended timeline is different from the expected

timeline in that actions can be taken to ensure that goals are met, whereas no actions

need to be taken to produce expected results. Any agents can process or post events in

any timelines through the meta-level agent. We intend to use ART-Ada to implement

the meta-level agent.

4.6 Interagent Communication

There are several possible layers in the interagent communication protocol:

• protocol for interprocess communication,

• protocol for telemetry,

• protocol for distributed objects,

• protocol for distributed knowledge bases, and

• protocol for distributed autonomous agents.

Unix interproeess communication protocol (e.g. sockets and TCP/IP) would be a

reasonable low-level protocol for prototypes. We intend to develop a protocol for dis-

tributed objects because we believe that it is an optimal layer for interagent com-

munication. Other higher-level protocols are interesting research topics, but they may

not be as practical as the distributed object protocol. Eventually, protocols used in

18

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

prototypical systems should be replaced with actual protocols supported by the Space
Station Freedom.

4.7 APEX Testbed

The proposed testbed for DAA is a real-time monitoring and diagnosis expert system

called APEX (Autonomous Power EXpert) for the electrical power distribution system

of the Space Station Freedom [Truong et al 89], [Waiters et al 90]. We will use APEX

to illustrate how DAA can be applied to real-time knowledge-based systems for Space

Station Freedom. It was previously implemented in KEE and Common Lisp and is be-

ing ported to ART-Ada and Ada at NASA Lewis Research Center. The APEX testbed

will be used to demonstrate the advantages of this approach.

Load

Scheduler
--- --[Expert k

System

_ [Driver[

Controller "/_'

Figure 4-2: Current APEX

Figure 4-2 is a simplified block diagram of the current APEX implementation while

Figure 4-3 is that of the new implementation based on DAA. In the current implemen-

tation of APEX, there are three modules:

• an expert system module written in KEE and Common Lisp that detects

multiple faults, predicts possible future faults, and recommends fixes;

• a scheduler module written in C based on linear programming that schedules

19

A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIIVIE KNOWLEDGE-BASED SYSTEMS

Reactlve] Reactive I [Cognitive I

Scheduler 1 Reasoner___._,="_

I I O"verI

Controller I--7 Cognltlv,
Reactlve

Figure 4-3: APEX based on Distributed Agent Architecture

electrical power distribution for maximum utilization of generated electrical

power; and

• several software controller modules written in Ada that detect single faults

and fix them immediately [Wright et al 89].

The software controller modules are written in Ada and deployed on the hardware

controllers of the electrical power distribution system. These modules are designed to

meet timing requirements of less than a second. They are examples of reactive agents.

The scheduler module is implemented separately from the expert system module, and

runs on a PC communicating through a network. It is expected to be deployed on the

Station as a reactive agent because its absence is unacceptable when the transmission

between the Station and the control center is down. This module seems to lack

dynamic scheduling capability. We intend to investigate the possibilities of applying AI

techniques for dynamic scheduling. NASA Lewis Research Center is also considering

COMPASS (COMPuter Aided Scheduling System). COMPASS is an interactive plan-

ning and scheduling system developed by McDonnell Douglas, and is available through

NASA Johnson Space Center [Bayer 89]. It is written in Ada and uses X windows inter-
faces.

2O

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

The expert system module should be distributed; more critical functionality that re-

quires reactive responses should be separated as a reactive diagnostician and deployed

on the Station while less critical functionalities such as trend analysis and long-term

prediction can remain as a cognitive diagnostician in the ground-based control center.

Following [Hayes-Roth et al 89], [Hayes-Roth 89], the reactive diagnostician based on

associative reasoning methods will be implemented as a Bayesian belief network while

the cognitive diagnostician based on rule- and model-based reasoning methods will be

implemented in ART-Ada. By the same token, a recovery planner may have to be

separated into a reactive planner and a cognitive planner. It is our intention to inves-

tigate the possibilities of adopting reactive planning methods found in various

literatures [Agre & Chapman 87], [Drummond 88], [Kaelbling 88], [Nilsson
89], [Sehoppers 87] to implement a reactive planner.

21

-- A DISTRIBUTED AGENT ,M_ICHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

5. Future Work

Our future work will focus primarily on the implementation of the distributed agent

architecture (DAA) for real-time knowledge-based systems for NASA's Space Station

Freedom Program. The proposed testbed for DAA is a real-time monitoring and diag-

nosis expert system called ,_,DEX (Autonomous Power EXpert) for the electrical power

distribution system of the Space Station Freedom [Truong et al 89], [Walters et al 90].

It was previously implemented in KEE and Common Lisp and is being ported to ART-

Ada and Ada at NASA Lewis Research Center. This expert system, however, is not

designed with the proposed architecture in mind. The main focus of the research is to

identify candidate components in APEX for distributed processing and to facilitate

cooperative processing between these components to meet the real-time requirements of

the SSF electrical power system. Since APEX has been developed under NASA sponsor-

ship, we assume that we will be granted permission to utilize it in this work.

Another assumption is that the underlying implementation language will be Ada and

Ada-based expert system tools. Ada has been mandated for many projects of govern-

ment agencies, including DoD, NASA and FAA, in which AI technology is expected to

play a significant role. For this reason, it is critical to address AI problems in Ada en-

vironments. An Ada-based expert system tool under consideration is ART-Ada. ART-

Ada is a proprietary software system developed and marketed by Inference. Since

APEX, the proposed testbed for this project, is already being ported from IgJ_E to ART-

Ada by NASA Lewis Research Center, we intend to use ART-Ada. Cognitive agents,

some reactive agents, and the meta-level agent of DAA will be implemented in ART-

Ada. Other reactive agents and communications packages will be directly implemented

in Ada for deployment on the 80386-based processors with four megabytes of memory

that are standard processors on the Station. It is also possible to integrate C- and Lisp-

based implementations as cognitive agents in DAA although it has been mandated that

all new software systems for the Station should be implemented in Ada. In Appendix I,

ART-Ada is further described, and other Ada-based tools are also summarized.

The critical part of our future effort will be to evaluate feasibility and benefits of

DA_A in the real-time environment of the APEX testbed and to identify issues for even-

tual deployment in the operational real-time environments of the Space Station

Freedom. The expectation is that the APEX testbed experience will lead directly into a

workable, usable implementation of the distributed agent architecture in the context of

NASA's Space Station Freedom project. The most obvious application is to apply DAA

to other prototype expert systems currently being developed for the Station such as

OMS. The end system would need to be integrated with other systems on the Station

and deployed in the operational environment of the Station.

22

-- A DISTRIBUTED AGENT ._RCItITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

6. Conclusion

The "Real-Time Expert Systems" project for NASA Johnson Space Center, under a

subcontract to the University of Houston - Clear Lake, has provided several valuable in-

sights into NASA's Space Station Freedom advanced automation projects.

• Requirements for SSF advanced automation projects have been identified.

• A new architecture based on distributed agents have been proposed to meet

those requirements.

• Possible testbed applications for the distributed agent architecture have been

recommended.

A successful application of the distributed agent architecture will yield new insights

into distributed and cooperative processing between multiple heterogeneous agents in

real-time environments. It will serve as a framework, or model, for more general ap-

plications of distributed real-time AI architectures.

23

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

References

[Agre & Chapman 87]

Agre, P., Chapman, D.

Pengi: An Implementation of a Theory of Activity.

In Proceedings of the International Conference on Artificial

Intelligence. AAAI, 1987.

[Ash & Hayes-Roth 90]

Ash, D., Hayes-Roth, B.

Temporal Representations in Blackboard Architectures.

Technical Report KSL 90-16, Knowledge Systems Laboratory, Stanford

University, March, 1990.

[Barrios 89a] Barrios Technology, Inc.

CLIPS/Ada Advanced Programming Guide.

Barrios Technology, Inc., 1989.

[Barrios 89b] Barrios Technology, Inc.

CLIPS/Ada Architecture ?vIanual.

Barrios Technology, Inc., 1989.

[Bayer 89] Bayer, S.E.

Space Station Freedom Program Capabilities for the Development and

Application of Advanced Automation.

Technical Report MTR-89W00279, The MITRE Corporation, Decem-

ber, 1989.

[Cohen et al 89] Cohen, P.R. et. al.

Trial by Fire: Understanding the Design Requirements for Agents in

Complex Environments.

AI Magazine 10(3), Fall, 1989.

[Collinot & Hayes-Roth 90]

Collinot, A, Hayes-Roth, B.

Real-Time Control of Reasoning: Experiments with Two Control
Models.

Technical Report KSL 90-17, Knowledge Systems Laboratory, Stanford

University, March, 1990.

[Dewberry 89] Dewberry, B.S.

The Environmental Control and Life Support System Advanced

Automation Project, Phase 1 - Application Evaluation.

In Proceedings of the Workshop on Space Operations Automation and

Robotics. NASA Johnson Space Center, July, 1989.

24

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

[Dodhiawala et al 89]
Dodhiawala, R. et. al.
Real-Time AI Systems:A Definition and An Architecture.
In Proceedings of the International Joint Conference on Artificial

Intelligence. IJCAI, 1989.

[Dominick et al 89]

Dominick, J. et. al.

NASA Systems Autonomy Demonstration Project: Advanced Automa-

tion Demonstration of Space Station Freedom Thermal Control

System.

In Proceedings of the Workshop on Space Operations Automation and

Robotics. NASA Johnson Space Center, July, 1989.

[Drummond 88] Drummond, M.

Situated Control Rules.

In Proceedings from the Rochester Planning Workshop: From Formal

.Systems to Practical Systems. University of Rochester, 1988.

[Erman 901 Erman, L.D. (editor).

Intelligent Real-Time Problem Solving (IRTPS): Workshop Report.

Technical Report TTR-ISE-90-101, Cimflex Teknowledge Corp.,

January, 1990.

[Filman et al 89] Filman, R.E., Boek, C., and Feldman, R.

Compiling Knowledge-Based Systems Specified in KEE to ADA.

Technical Report Final Report, NASA Contract NAS8-38036, Intel-

liCorp Inc., August, 1989.

[Garvey et al 87] Garvey, A., et. al.

BBI User _Ianuat - Common LISP Version 2.0.

Technical Report KSL 86-61, Knowledge Systems Laboratory, Stanford

University, August, 1987.

[Georgeff & Ingrand 89a]

Georgeff, M.P., Ingrand, F.F.

Decision-Making in an Embedded Reasoning System.

In Proceedings of the International Joint Conference on Artificial

Intelligence. AAAI, 1989.

[Georgeff & Ingrand 89b]

Georgeff, M.P., Ingrand, F.F.

Monitoring and Control of Spaeeeraft Systems Using Procedural

Reasoning.

In Proceedings of the Space Operations Automation and Robotics

Workshop. NASA Johnson Space Center, 1989.

25

-- A DISTRIBUTEDAGENT,MtCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

[Giarratano 89]

[Ginsberg 89]

[Hardin & Albin

[Hayes-Roth85]

[Hayes-Roth89]

Giarratano, J.C.
CLIPS User'8 Guide.

NASA Johnson Space Center, 1989.

Ginsberg, M.L.

Universal Planning: An (Almost) Universally Bad Idea.

AI A4agazine 10(4), 1989.

88]
Hardin, D.S., Albin, K.L.

Taking Inference to Task.

In Proceedings of the Conference on Artificial Intelligence _ Ads.

Department of Computer Science, George Mason University,

November, 1988.

Hayes-Roth, B.

A Blackboard Architecture for Control.

Artificial Intelligence 26(3), July, 1985.

Hayes-Roth, B.

Architectural Foundations for Real-Time Performance in Intelligent

Agents.

Technical Report KSL 89-63, Knowledge Systems Laboratory, Stanford

University, December, 1989.

[Inference 87]

[Hayes-Roth et al 89]

Hayes-Roth, B. et. al.

Intelligent Monitoring and Control.

In Proceedings of the International Joint Conference on Artificial

h_telligence. IJCAI, 1989.

[Hewett 88] Hewett, M.

BBI User Manual - Version 2.1 Update (Common LISP).

Technical Report KSL 86-61a, Knowledge Systems Laboratory, Stan-

ford University, February, 1988.

[Hirshfield & Slack 88]

Hirshfield, S.H., Slack, T.B.

ERS: An Expert System Shell Designed and Implemented in Ada.

In Proceedings of the Conference on Artificial Intelligence _ Ada.

Department of Computer Science, George Mason University,

November, 1988.

Inference Corporation.

Ada-ART, Specification for an Ada-based State-of-the-Art Expert

System Construction Capability.

Technical Report, Inference Corporation, August, 1987.

26

-- A DISTRIBUTEDAGENTARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

[Inference 89a] Inference Corporation.

ART/Ada Design Project - Phase I, Final Report.

Technical Report, Inference Corporation, March, 1989.

[Inference 89b] Inference Corporation.

ART-Ada//VMS 2.0 Beta Reference Manual.

Inference Corporation, 1989.

[Ishida 88] Ishida, T.

Optimizing Rules in Production System Programs.

In Proceedings of the National Conference on Artificial Intelligence.

AA_AI, 1988.

[Jaworski et al 87]

Jaworski, A., LaVallee, D., Zoch, D.

A Lisp-Ada Connection for Expert System Development.

In Proceedings of the Third Annual Conference on Artificial Intel-

ligence _JAda. Department of Computer Science, George Mason

University, October, 1987.

[Jouchoux et al 87]

Jouchoux, A. et. al.

Developing a Spacecraft Monitor and Control System in Ada.

In Proceedings of the Joint Ada Conference, National Conference on

Ada Technology and Washington Ada Symposium. 1987.

[Kaelbling 88] I(aelbling, L.P.

Goals as Parallel Program Specification.

In Proceedings of the National Conference on Artificial Intelligence.

AAAI, 1988.

[Kelly et al 89] Kelly, C. et. al.

The Migration of an Expert System Application from Lisp to Ada.

In Proceedings of the Conference on Artificial Intelligence CdAda.

Department of Computer Science, George Mason University,

November, 1989.

[Labhart & Williams 89]

Labhart, J., Williams, K.

Ada MeriTool: A Software Tool for Knowledge-Based Systems.

In Proceedings of the Conference on Artificial Intelligence _ Ada.

Department of Computer Science, George Mason University,

November, 1989.

[Laird et al 87] Laird, J.E., Newell, A. and Rosenbloom, P.S.

SOAR: An Architecture for General Intelligence.

Artificial Intelligence 33(1), 1987.

27

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-T_IE KNOWLEDGE-BASED SYSTEMS

[Lee 90] Lee, S.D.

Toward the Efficient Implementation of Expert Systems in Ads.

In Submitted to the TRI-Ada Conference. ACM, 1990.

[Lee & Alien 89] Lee, S.D., Allen, B.P.

Deploying Expert Systems in Ads.

In Proceedings of the TRI-Ada Conference. ACM, 1989.

[Lee & Allen 901 Lee, S.D., Allen, B.P.

ART-Ada Design Pr@ct - Phase II, Final Report.

Technical Report, Inference Corporation, February, 1990.

[Lesser et al 88] Lesser, V.R., Pavlin, d., Durfee, E.H.

Approximate Processing in Real-Time Problem Solving.

AI t_iagazine 9(1), Spring, 1988.

[Lim & Takefuji 90]

Lira, M.H., Takefuji, Y.

Implementing Fuzzy Rule-Based Systems on Silicon Chips.

IEEE Expert 5(1), February, 1990.

[Lukefahr et al 89]

Lukefahr, B.D. et. al.

A Diagnostic Prototype of the Potable Water Subsystem of the Space
Station Freedom ECLSS.

Technical Report UAH Research Report Number 824, Johnson

Research Center, University of Alabama, Huntsville, November,
1989.

[Martin 89]

[NASA/JSC 891

[Nilsson 89]

[Schoppers 87]

Martin, J.L.

A Development Tool for Real-Time Expert Systems.

Alsynews 3(1), March, 1989.

Artificial Intelligence Section, NASA Johnson Space Center.

CLIPS Version 3.3 Reference Manual.

NASA Johnson Space Center, 1989.

Nilsson, N.J.

Action Networks.

In Proceedings from the Rochester Planning Workshop: From Formal

Systems to Practical Systems. University of Rochester, 1989.

Schoppers, M.J.

Universal Plans for Reactive Robots in Unpredictable Domains.

In Proceedings of the International Joint Conference on Artificial

Intelligence. IJCAI, 1987.

28

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

[Schwartz90]

[Sha89]

Schwartz, T.J.
Fuzzy SystemsCometo Life in Japan.
IEEE Expert 5(1), February, 1990.

Sha L., Goodenough J.B.

Real-Time Scheduling Theory and Ada.

Technical Report CMU/SEI-89-TR-14, Carnegie-Mellon University,

Software Engineering Institute, April, 1989.

[Sha & Goodenough 90]

Sha, L., Goodenough, J.B.

Real-Time Scheduling Theory and Ada.

Computer 23(4), April, 1990.

[Simonian 88] Simonian, R.P., Crone, M.

InnovAda: True Object-Oriented Programming in Ada.

The Journal of Object-Oriented Programming 1(4),

November/December, 1988.

[SPS 88] Software Productivity Solutions, Inc.

Classic-Ada User Manual.

Software Productivity Solutions, Inc, 1988.

[Stockman 88] Stoekman, S.P.

ABLE: An Ada-Based Blackboard System.

In Proceedings of the Conference on Artificial Intelligence _ Ada.

Department of Computer Science, George Mason University,

November, 1988.

[Taylor & Hansen 89]

Taylor, E.W., Hanson, M.A.

OMS FDIR - Initial Prototyping.

In Proceedings of the Workshop on Space Operations Automation and

Robotics. NASA Johnson Space Center, July, 1989.

[Togai & Watanabe 86]

Togai, M., Watanabe, H.

Expert System on a Chip: An Engine for Real-Time Approximate

Reasoning.

IEEE Expert 1(3), Fall, 1986.

[Truong et al 89] Truong, L., et. al.

Autonomous Power Expert Fault Diagnostic System for Space Station

Freedom Electrieal Power System Testbed.

In Proceedings of the Workshop on Space Operations Automation and

Robotics. NASA Johnson Space Center, July, 1989.

- 29

- A DISTRIBUTEDAGENT.M:{CHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

[Wallnau et al 88]
Wallnau, K.C. et. al.
Construction of Knowledge-BasedComponents and Applications in

Ads.
In Proceedings of the Conference on Artificial Intelligence _ Ada.

Department of Computer Science, George Mason University,

November, 1988.

[Walls & Lollar 89]

Walls, B., Lollar, L.F.

Automation in the Space Station Module Power Management and Dis-

tribution Breadboard.

In Proceedings of the Workshop on Space OperatioT_s Automation and

Robotics. NASA Johnson Space Center, July, 1989.

[Waiters et al 90]

Walters, J.L., et. al.

Autonomous Power Expert System.

In Proceedings of the Goddard Conference on Space Applications of

Artificial Intelligence. NASA Goddard Space Flight Center, May,

1990.

[Washington & Hayes-Roth 89]

Washington, R., Hayes-Roth, B.

Input Data Management in Real-Time AI Systems.

In Proceedings of the International Joint Conference on Artificial

Intelligence. IJCAI, August, 1989.

[Washington & Hayes-Roth 90]

Washington, R., Hayes-Roth, B.

Abstraction Planning in Real-Time.

Technical Report KSL 90-15, Knowledge Systems Laboratory, Stanford

University, March, 1990.

[Washington et al 90]

Washington, R., et. al.

Using Knowledge for Real-Time Input Data Management.

Technical Report KSL 90-14, Knowledge Systems Laboratory, Stanford

University, March, 1990.

[Wright 89] Wright, P.A.

Ads Real-Time Inference Engine (ARTIE).

In Proceedings of the Conference on Artificial Intelligence _ Ada.

Department of Computer Science, George Mason University,

November, 1989.

3O

A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

[Wright et al 89] Wright, T, Mackin, M., Gantose, D.

Development of Ada Language Control Software for the NA&4 Pou'er

:\fanagement and Distribution Testbed.

Technical Report, NASA Lewis Research Center, 1989.

[Zadeh 881 Zadeh, L.A.

Fuzzy Logic.

Computer 21(4), April, 1988.

31

-- A DISTRIBUTEDAGENTARCHITECTURE FOR RE_LL-TIME KNOWLEDGE-BASED SYSTEMS

I. Ada-Based Expert System Tools

In recent years, an increasing number of Ada-based AI tools have been reported in

publications. And yet only a handful of commercial off-the-shelf (COTS) tools are

available today. In this appendix, we will review both commercial and non-commercial

Ada-based tools.

1.1 Commercial Tools

In this section, we will review Ada-based tools that are generally available as commer-

cial off-the-shelf (COTS) tools.

1.1.1 ART-Ada

Inference has been involved with Ada-based expert systems research since 1986. Initial

work centered around a specification for an Ada-based expert system tool. The result

of this research activity is summarized in [Inference 87]. In 1988, the ART-Ada Design

Project was initiated to design and implement an Ada-based expert system tool. At the

end of Phase I of this project, a working prototype was successfully demonstrated. This

research activity is reported in [Inference 89a] and [Lee & Allen 89]. In 1989, during the

ART-Ada Design Project - Phase II, the Phase I prototype was extended and refined so

that it could be released to beta sites [Lee & Allen 90]. At the end of 1989, ART-Ada

was released to beta sites as ART-Ada 2.0 Beta on the VAX/VMS and Sun/Unix

platforms [Inference 89b]. In 1990, eight beta sites, four NASA sites and four Air Force

sites, will be evaluating ART-Ada 2.0 for eight months by developing expert systems

and deploying them in Ada environments.

The objectives of the ART-Ada Design Project were two fold:

1. to determine the feasibility of providing a hybrid expert system tool such as

ART in Ada, and

2. to develop a strategy for Ada integration and deployment of such a tool.

Both of these objectives were met successfully when ART-Ada 2.0 beta was released to

the beta sites. During the evaluation period, the following objectives are important:

1. to evaluate any bugs or performance problems, and

2. to determine any issues related to particular embedded system environments.

ART-Ada allows applications of a C-based expert system tool called ART-IM to be

deployed in various Ada environments. While ART-IM's inference engine was reimple-

32

__ A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TINtE IsiNOWLEDGE-BASED SYSTEMS

mented in Ada, ART-IM's front-end (its parser/analyzer and graphical user interface)

was reused as the ART-Ada development environment. The ART-IM kernel was en-

hanced to generate Ada source code that would be used to initialize Ada data structures

equivalent to ART-IM's internal C data structures, and also to interface with user-

written Ada code. Once the development is complete, the application is automatically

converted to Ada source code. It is then compiled and linked with the Ada runtime

kernel, which is an Ada-based inference engine. The overview of ART-Ada is depicted

in figure I-1.

ART-Ada Application

Development Ada /
Environment Package

ART-Ada
Runtime
Kernel

Appllc_lon
Knowledge

Base

Executable
Ada Application

Compilation
System

Figure I-l: Overview of ART-Ada

ART-Ada provides comprehensive functionality for knowledge representation and in-

ferencing within an open architecture that facilitates embedding knowledge base com-

ponents into broader software applications.

For knowledge representation, ART-Ada combines object-oriented and relational data

modeling with independent rules to express decision logic. Objects are represented as

symbols with associated attributes and attribute values. Relationships tie together ob-

jects, literal values, and structured values. Objects can be organized into classification

hierarchies through inheritance.

A rule in ART-Ada is a condition paired with an associated action. The condition

identifies those combinations of objects and relationships to which the action should be

33

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

applied. Actions can augment or modify the data model (e.g., to derive a logical
inference), and can perform procedures such as input/output. Rules are frequently
thought of as expressing"IF condition THEN action". However, a more accurate way
to think of rules is "WHENEVER data satisfies condition APPLY actions to data".
The critical point is that rules are independent; i.e., each rule is a free standing state-
ment that fully expressesthe conditions under which it is applicable. This is in contrast
with an "IF-THEN" statement of a procedural programming language, which is ex-
plicity executed as a consequenceof the flow of control within a program. The con-
ditions under which an IF-THEN statement is reachedin the flow of control comprise
significant implicit conditions on when and how to perform the THEN-part of the state-
ment.

1.1.2 CHRONOS

CHRONOS is a commercial expert system tool written in Ada [Martin 89].

developed by a French company, Euristic Systems and marketed mainly in France.

It is

1.1.3 Classic-Ada

Classic-Ada is an object-oriented programming language developed and marketed by

Software Productivity Solutions, Inc [SPS 88]. Its input language is based on Smalltalk,

but it works like C++; it is a preprocessor that generates Ada source code. Unlike

ART-Ada, the generated Ada code is self-sufficient; it does not require an Ada runtime

kernel to compile it. Although Classie-Ada does not support rules, its object-oriented

programming capability is similar to that of ART-Ada.

1.1.4 CLIPS/Ada

CLIPS (C Language Interface Production System) is a C-based forward-chaining rule-

based expert system tool developed by NASA Johnson Space Center [NASA/JSC

89], [Giarratano 89]. Its syntax is very close to those of ART, ART-IM and .4aRT-Ada.

CLIPS has been ported to Ada by Barrios Technology for NASA Johnson Space

Center [Barrios 89a], [Barrios 89b]. Unlike ART-Ada, which uses ART-IM's develop-

ment environment to generate Ada source code, CLIPS/Ada is a complete reimplemen-

tation of CLIPS. CLIPS/Ada does not support object-oriented programming, a truth

maintenance system, and explanation generation utilities, all of which are supported in

ART-Ada. Forward-chaining rules and facts are the only knowledge representation

methods available in CLIPS/Ada.

1.1.5 Summary

Commercial Ada-based tools are summarized in table I-1.

34

A DISTf{IBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

System Organ. Graphical UI Rules OOP Platforms

_RT-Ada Inference DECwindows/C Yes Yes V._X/VMS,Sun

CHRONOS Euristic Windows Yes No PC/AT,V.a_X/VMS,Unix

Classic-Ada SPS _ No Yes V_%X/_v%,lS,Sun,etc.

CLIPS/Aria Barrios None Yes No V._X/'VEIS

Table I-l: Commercial Ada Tools

1.2 Research Tools

In this section, we will review Ada-based tools that are not generally available as a

commercial off-the-shelf (COTS) tool. Some tools are still being developed, and others

are being used internally. Most of these tools are reported in the proceedings of the an-

nual conference on artificial intelligence _ Ada (AIDA), 1987-1989.

1.2.1 ABLE

ABLE (Ada BLackboard Environment) is being developed by Boeing Nlilitary

Airplanes and is based on Erasmus, Boeing's Lisp-based blackboard system [Stockman

88]. It attempts to translate Erasmus source code into Ada so that blackboard applica-

tions developed in Erasmus could be deployed in Ada. Since Lisp code is embedded

within the knowledge sources of Erasmus, a Lisp-to-Ada translator must be developed.

We believe, however, that it is difficult, if not impossible, to develop such a translator

that can handle the full Lisp language. Currently, the translator exists only in the most

primitive state. Another issue is integration with existing Ada packages while an Eras-

mus application is developed in a Lisp environment. Integration of Lisp with Ada is not

generally feasible.

1.2.2 ARTIE

Boeing Military Airplanes developed ARTIE (Ada Real-Time Inference Engine), an

Ada implementation of Pascal Inference Engine (PIE)[Wright 89]. It appears to be

designed specifically for the 1750A architecture. To run on the 1750A, software

modules must fit in the 64K segment. From the beginning, the requirement was that its

run-time overhead be no greater than 64K. It achieves this goal by executing with only

35 Kbytes of run-time overhead. Its inference engine is a simple forward-chaining rule

system with no support for object-oriented programming. It has been ported to Apollo,

VAX, Sun and Silicon Graphics.

35

- A DISTRIBUTED AGENT ,ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

1.2.3 ERS

ERS (Embedded Rule-based System) is a C-based expert system tool used internally

by PAR Government Systems. Recently, ERS has been ported to Ada [Hirshfield &

Slack 88]. Its design is based on that of the AL/X system, a rule-based consultation

system, which incorporates a probabilistic inference mechanism. Its inference engine

uses a version of Nilsson's goal-directed backward-chaining algorithm for determining

the degree of belief in the goal hypotheses.

1.2.4 FLAC

FLAC (Ford Lisp-Ada Connection) uses a Lisp environment on a Lisp machine to de-

velop an expert system application and generate Ada code [Jaworski et al 87]. In

FLAC, the knowledge base is specified using a graphical representation similar to that

of VLSI design (e.g. OR gates and AND gates). Since FLAC's development environ-

ment is based on Lisp, it probably does not support Ada call-in/call-out. FLAC's

knowledge base is pre-compiled and static, which means that objects may not be added

or deleted dynamically at runtime although their values may be changed. This imposes

major functionality restrictions that do not exist in ART-Ada.

1.2.5 KEE/Ada

IntelliCorp has done some research to develop a system for translating KEE applica-

tions into Ada [Filman et al 89]. On the surface, the main difficulties of the approach

seem to be Ada integration during development and the translation of Lisp code to Ada.

The advantage of ART-Ada is that Ada subprograms can be called directly from the

knowledge base during development. Since the development environment of ART-Ada

is written in C, Ada call-back is used to integrate Ada subprograms. Ada call-back

simply means that the Ada main program calls a C program (ART-Ada development

environment), which calls back to Ada subprograms. This is the only proper way to

call Ada from another language such as C. Ada is not only a programming language but

also a runtime environment. The use of the Ada main program ensures the proper in-

itialization of the Ada runtime environment.

The problem with KEE is that it is written in Lisp. Lisp is also a runtime environ-

ment like Ada. Therefore, it would be hard to start Lisp from the Ada main, which is

the only way to call back to Ada from Lisp. In fact, the Lucid Common Lisp 3.0 used

to implement KEE supports call-out to C, Fortran, and Pascal, but not Ada.

ART-Ada also supports Ada call-in. We developed an Ada binding --- Ada packages

that interface with the ART-Ada development environment, which is implemented in

C. ART-Ada provides over 200 ART-Ada functions that can be called from Ada to con-

trol and access the knowledge base procedurally. It would be impossible to implement

an Ada binding for KEE in Lisp so that KEE's Lisp functions could be called from Ada.

36

- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEI<NOWLEDGE-BASEDSYSTEMS

In KEE, since neither Ada call-out nor call-in is available, actions in the rule right-
hand side (RHS) must be implemented in Lisp. The automatic translation of the Lisp
codeto Ada would alleviate the burden of manual translation if it is technically feasible.
It might be possibleto translate a small subset of Lisp to Ada automatically. Even so,
the efficiency of the translated Ada code would not be as good as hand-written Ada
code. This approach also excludes the use of existing Ada packages (for numerical
analysis, signal processing,etc.) in the knowledge base. In ART-Ada, existing Ada
packagescan be easily integrated directly into the knowledgebaseeven during develop-
ment.

1.2.6 MeriTool

MeriTool was originally implemented in C and ported to Ada by Merit Technology

Incorporated [Labhart & Williams 89]. Its inference engine uses the Merit Enhanced

Traversal Engine (METE), which is similar to Forgy's RETE algorithm. Its rule lan-

guage syntax is also similar to that of OPS5; it supports objects with attribute-value

pairs. It does not appear, however, to support object-oriented programming such as in-

heritan.ce, methods, etc.

1.2.7 Other Related Work

[nnovAda is an object-oriented programming language developed by Harris Space Sys-

tems Corporation and is similar to Classic-Ada [Simonian 88].

Unisys' RLF (Reusability Library Framework) project focuses on the development of

Ada software components supporting two knowledge representation techniques --- struc-

tured inheritance networks and rule-based inference systems --- and the domain specific

reuse of these components [Wallnau et al 88].

Developed by Collins Government Avionics Division of Rockwell International, SLATE

is an inference engine written in Ada and targeted for embedded applications, specifi-

cally avionics [Hardin & Albin 88]. SLATE employs Ada tasking to decouple inference
and search.

37

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

II. A Proposal for Real-Time Extensions to
ART-Ada

II.1 Introduction

In recent years, expert systems have been widely used to monitor and control various

systems in real-time. These systems require capabilities to process real-time data in a

timely manner and to reason about temporal data and relations. When timing require-

ments cannot be met using a single processor, it may be necessary to distribute the sys-

tem among multiple processors. In this case, an efficient communication protocol must

be provided. In order to respond to a new situation effectively, decision strategy may

have to be changed dynamically.

To meet these requirements, we propose a framework for building real-time expert sys-

tems as an extension to an Ada-based expert system tool, ART-Ada. The framework is

based on the following features:

• a set of tools for performance monitoring and tuning,

• temporal reasoning and trend analysis,

• communication protocol for passing messages between distributed expert sys-

tems, and

• dynamic rule scheduling.

We believe that this framework, when used in conjunction with ART-Ada, will simplify

and systematize the development of real-time expert systems.

II.2 Performance Monitoring and Tuning

The performance of an expert system varies widely depending on how it is imple-

mented. It is often necessary to monitor activities in the pattern marcher (e.g. the num-

ber of pattern instantiations, partial matches, activations, etc.) or the execution time of

a rule RHS (right-hand side) action in order to determine areas for optimization. Per-

formance analysis can be aided by a set of tools that graphically display the infor-

mation.

Unlike conventional software, rule-based systems are sensitive to the ordering of pat-

terns in rules. Currently, the only way to optimize pattern ordering is to monitor ae-

tivities in the pattern and join networks and optimize them manually. It may be pos-

sible, however, to automate this manual optimization process. It has been reported that

an automated tool was successfully used to optimize join ordering [Ishida 88]. An op-

38

- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

timization algorithm can be automatically applied to a rule-based program to find near-

optimal pattern ordering for the entire program.

II.3 Temporal Reasoning and Trend Analysis

In a real-time expert system, it is often necessary to reason about and perform statis-

tical analysis on temporal data -- data that change over time. In order to avoid infor-

mation overloading, several levels of abstraction should be used. Raw data should be

preprocessed to suppress noises and redundant data. Historical data should not par-

ticipate in the pattern-matching process directly. Rather, high-level abstraction ac-

quired by applying temporal reasoning and trend analysis to the historical data, should

used in the knowledge base.

For example, a monitoring and control expert system for the Space Shuttle called

INCO uses a layered approach [Bayer 89]:

A layered architecture was developed to move from raw telemetry data

through generic data conversion algorithms to procedural techniques for

isolating algorithmic domain specific knowledge and finally to rule-based tech-

niques for heuristic knowledge. An interesting characteristic of this layered

approach is that, as data moves up the layers, the total amount of data

decreases, but the information value of the data increases. For example,

192,000 bits of information enter at the first layer, but the rule-based expert

system operates only 350 facts generated by the layer three algorithms.

We propose to implement a set of functions that can be layered on top of ART-Ads as

a separate library for temporal reasoning and trend analysis. This library is based on

the concepts, monitors, events and timers, which are explained below.

II.3.1 Monitors

A monitor is used to store historical data in a ring buffer outside of the knowledge

base. A monitor is refered to only by its name, which is stored in a hash table. The

following is a partial list of functions related to a monitor:

• (make-monitor name &optional action) returns monitor

• (set-monitor-polling second) returns T or NIL

• (set-monitor-size number) returns T or NIL

• (get-monitor-value monitor time) returns value

• (get-monitor-min monitor start-time end-time) returns value

39

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNO\VLEDGE-BASED SYSTEMS

• (get-monitor-max monitor start-time end-time) returns value

• (get-monitor-average monitor start-time end-time) returns value

• (increasing-p monitor start-time end-time) returns T or NIL

• (deereasing-p monitor start-time end-time) returns T or NIL

• (steady-p monitor start-time end-time) returns T or NIL

• (changed-p monitor) returns T or NIL

The following example creates monitors for voltage, current, and temperature, and

analyzes the trend of these parameters.

;;; Telemetry data comes in every second and

;;; up to I00 values per item should be saved•

(set-monitor-polling I)

(set-monitor-size I00)

' create monitors and set alarm actions

(make-monitor voltage voltage-alarm)

(make-monitor current current-alarm)

(make-monitor temperature temperature-alarm)

;;; the trend of the voltage is increasing
''' over the last 5 seconds

(increasing-p voltage -5 O)

•"" the minimum value of the battery's voltage

;' over the last 30 seconds > 30

(> (set-monitor-mln voltage -30 O) 30)

•;; always (Voltage = O) over the last 5 seconds

(= (get-monitor-mln voltage -5 O)

(get-monitor-max voltage -5 0))

II.3.2 Events

Events are used to extract temporal relations between parameters. Events are a col-

lection of time that satisfies certain conditions specified in a function, make-events.

The following is a partial list of functions related to events:

• (make-events monitor predicate value start-time end-time) returns events

• (and-events events1 events2) returns events

• (or-events events1 events2) returns events

4O

- A I)[5TI_II3UTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLttDGI:;-1L\SEDSYSTEN1$

• (before-p events1events2)returns T or NIL

• (after-p eventsl events2) returns T or NIL

• (while-p events1 events2) returns T or NIL

The following example examines temporal relations between parameters defined in the

previous example.

;;; ever (Voltage > 5) during over the last I0 seconds

(make-events voltage > 5 -lO O)

• "; (Voltage > 0) before (Temperature < 10)
• '' in last 10 seconds

(before-p (make-events voltage > 0 -10 0)

(make-events temperature < 10 -10 0))

''; (Voltage = 2) while (Temperature > 5)
;;; in last 10 seconds

(while-p (make-events voltage = 2 -iO O)

(make-events temperature > 5 -10 0))

;;; (Voltage > 0 and Current = 1) before

;;; (Temperature = O) in last 10 seconds

(before-p (and-events (make-events voltage > 0 -iO O)
(make-events current = 0 -10 0))

(make-events temperature = 0 -10 0))

II.3.3 Timers

Rule-based systems are usually data-driven. In a real-time system, however, process-

ing must be driven by time as well as data. A timer can be used to implemented time-

driven processing. The following is a partial list of functions related to a timer:

• (set-timer name type hour min sec &optional action) returns T or NIL

where type is at or every or offset

• (reset-timer name) returns T or NIL

• (advance-time hour min sec) returns T or NIL

• (set-time hour rain sec) returns T or NIL

In the following example, the message, lunch-message, will be invoked automatically

at noon.

(def-art-fun lunch-message ()

(printout t "lunch time everyone..." t))

(set-tlmer lunch-time at 12 0 0 lunch-message)

41

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDGE-BASED SYSTEMS

II.4 Dynamic Rule Priority

In real-time AI architectures, the priority of a task should be dynamically determined

based on the timing constraints and the resource requirements of the task [Hayes-Roth

et al 89], [Dodhiawala et al 89]. In the current version of ART-Ada, the priority of a

rule cannot be changed dynamically. If the priority of a rule is allowed to be changed

at runtime, rule scheduling strategy can also be modified dynamically.

In the following example, the closer the distance is, the higher priority will be assigned

to the rule activation. In fact, the same rule can be activated with different priorities if

its priority can be modified dynamically. In order for the rule dynamic priority to func-

tion properly, the priorities of all activated rules in the agenda must be refreshed before

a rule is selected for execution.

(defrule foo

(declare (salience ?s = i/?d))

(schema ?enemy-plane (distance ?d))
=>

(...))

If the execution time of a rule is known, it can be used to adjust its priority. It is of-

ten desirable to assign a higher priority to a rule with a shorter execution time. In fact,

it is the strategy used by the rate monotonic theory [Sha 89], [Sha ,_ Goodenough 90].

In the following example, duration is the execution time of a rule RHS action. The ex-

ecution time can be either measured or estimated.

(defrule foo

(declare (duration 1 sec))

(...)
=>

(...))

II.5 Message Passing between Distributed Expert Systems

Multiple cooperating ART-Ada applications can run on loosely-coupled multiple

processors. ART-Ada supports object-oriented programming. A method is a function

associated with an object or a class that can be inherited. When a message is sent via

an ART-Ada function `send, an appropriate method will be invoked. If objects are dis-

tributed over multiple processors, and a data dictionary is used to define mapping be-

tween a processor and an object, the message passing mechanism through ,send can be

used without modification to implement distributed message passing. When a message

is sent, the system can simply check the data dictionary and send the message to the

appropriate processor. Each ART-Ada application can use an asynchronous function to

check its message queue between every rule firing.

42

-- A DISTRIBUTED AGENT ARCHITECTURE FOR REAL-TIME KNOWLEDC, E-BASED SYSTEMS

II.6 Other Issues

In this section, a wish list compiled by the Pilot's Associate project team at McDonnell

Aircraft Company, St. Louis, Missouri is included without modification for complete-

ness:

1. access to rule scheduler

2. context dependent salience

3. automatic data time tagging

4. concurrent working memory updates

,5. working memory data locking

6. optional separation of rule schedule/execute

7. pattern/join network access

8. ability to add demons to assert/retract, etc.

9. user defined rule declarations (duration, etc.)

Issues #2 and #9 are addressed by the proposed extensions to .4aRT-Ada discussed

above.

The current version of .M:{T-Ada already addresses the issue #6. A_RT-Ada stores

assertions and retractions specified in a rule RHS action in a queue for further process-

ing during the execution of a rule RHS. After the RHS action is fully executed, the

assertion/retraction queue is processed.

Issues #1, #3, #7, and #8 are technically feasible. It would be a good idea to in-

clude these features in ART-Ada.

Issues #4 and #5, on the other hand, may be difficult to implement. Working

memory update is usually done through assertions and retractions, which gets stored in

a queue and processed sequentially. The code segment for assertions and retractions is a

critical section; it must be executed sequentially to maintain consistency. The issue #5

(working memory data locking) is related to concurrent update. If concurrent update is

not feasible, working memory data locking may not be necessary.

43

- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

III. Feedback from Review Meetings

III.1 Introduction

A series of meetings were held in Houston, Texas to review the distributed agent ar-

chitecture (DAA) proposed in this paper during May 2-4, 1990. Most attendees are cur-

rently working on the projects related to the Space Station Freedom Program. These

meetings are summarized below.

III.2 Meeting with the Communications and Tracking Group

Most of the attendees are working on the onboard software for the SSF communica-

tions and tracking system. They do not expect expert system tools such as CLIPS/Ada

to qualify for flight mainly because they cannot be validated and verified. Another

problem is onboard resource limitation. They do not expect onboard processors and

memories on the Space Station to be upgraded from the current configuration in the

near future. It is also unlikely that special processors like fuzzy chips would be allowed

on the Station.

The current configuration of the standard processor is based on the Intel 80386 with

four megabytes of memory. It is expected that the operating system would consume up

to two megabytes of memory. Therefore, only two megabytes of memory are available

for application software. Realistically, however, only one megabyte or less would be

available to a particular application. For example, memory requirement for OIVLa. is

currently only 500 Kbytes, which is not sufficient for CLIPS-based applications. Their

approach was to extract algorithms out of their CLIPS-based prototype and to reimple-

ment it directly in Ada using a tool called FIBS (Fault Isolation by Bit Strings). Other

software (e.g. OMA) may have to follow the same path.

They are concerned about the design of OMA and its interfaces to other Tier II

Managers. According to them, the current OMA design permits software to disable

manual overrides of some system operations. They believe, however, that the manual

override should always be allowed. They are also concerned about coordination with

the ground-based system for communications and tracking.

It was pointed out that graceful degradation should have been included in the DAA

design. Graceful degradation can be achieved by using only a small portion of available

resources (e.g. memory) during normal operation. This design principle permits min-

imal performance degradation when resources become tighter. Graceful degradation is a

principle often used in real-time systems.

Another interesting point, was that on the Space Station, the same processor used for

44

- A DISTRIBUTEDAGENT_.CHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

diagnosis would also have to acquire necessarydata for diagnosis. It would not have a
luxury to use a separate processor for preprocessing,which is usually the case foE"
ground-basedsystems.

DAA proposesa distributed object protocol as an optimal layer for interagent com-
munication. As pointed out during this meeting, the DMS protocol already includes a
distributed object protocol, RODB, which confirms the DAA design.

Attendees were:

• Oron Sehmidt, NASA/JSC, EE7

• David Overland, NASA/JSC, EE7

• Mark Glorioso, NASA/JSC

• JosephKahan, MDAC and NASA/JSC, MOD, DEa2

• John Bandlow, lVIDACand NASA/JSC, MOD, DE32

III.3 Meeting with MITRE

MITRE plans to port their CLIPS-based OMA prototype to Ada using ART-Ada.

They would like their new prototype based on ART-Ada to be used as a starting point

for the production version of OMA.

They are interested in DAA. They are not aware of any other architectures like DAA

proposed for the Space Station. They would like to see it further developed.

As pointed out during the meeting, the Ada mandate for the Space Station applies

only to new software components. Existing software components written in other lan-

guages can be reused. Lisp may be an exception and may not be allowed.

Attendees (all from MITRE) were:

• Jim Spitzer, Department Head, Space Data Systems

• Chris Marsh

• Debra Sehreekenghost

• Kathryn Cooksey

• Dona Erb

45

- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIME KNOWLEDGE-BASED SYSTEMS

• Bruce Treea

• Stu Bezl

• Audrey Dorofee

• Debbie McGrath

III.4 Meeting with Ford Aerospace and IBM

The plan for the SSCC (Space Station Control Center) is to baseline the present

MCCU, which is only a couple of years old. The Mission Support Contract, which is

used to build the SSCC, will be reviewing the functional specification for the SSCC in

November, 1990. The functional spec is being developed now by UDeF (User Defined

Function) requirements. The people in the UDeF group are mostly shuttle flight con-

trollers. Some of them will be transferred to the SSCC eventually.

According to the IBM and Unisys engineers, there would be no advanced automation

in the initial SSCC. However, they must make sure that their design would not prevent

any future advanced automation in the SSCC.

According to them, OMGA no longer exists. Instead, its functionality has been dis-

tributed over multiple subsystems and integrated into the SSCC. The communication

interfaces are still centralized.

A possible area for advanced automation in the SSCC is the existing MCC databases,

FAPS, SCAPS and MOMS, that are used to troubleshoot problems. They are presently

not very useful due to the cumbersome retrieval and browsing mechanisms.

Attendees were:

• Matt Hansen, Ford Aerospace

• James M. Lee, Unisys

• Rodney W. Holden, IBM

• Charles Copeland, Ford Aerospace

• Amadeo Montemayor, Ford Aerospace

• John Engvall, AI Center Manager, Ford Aerospace

• Troy Heindel, NASA, MOD

46

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TLMEKNOWLEDGE-BASEDSYSTEMS

111.5 Meeting with McDonnell Douglas

Tile current memory requirement for OMA is only 500 Kbytes. The estimated size of
their OMA designbasedon CLIPS/Ada is 1.2 Mbytes, which may be too optimistic and

could be larger in reality. ART-Ada's memory requirement is probably similar to that

of CLIPS/Ada.

The primary objective of the current release of ART-Ada was to provide the

functionality. Optimization was not the main concern. The ON£A, developers are very

interested in the optimized version of ART-Ada, preferrably on a 386-based processor.

They just had an OMA PDR, and they have another year before CDR, during which

they would like to evaluate ART-Ada. Inference is looking for funding to optimize

ART-Ada and to create a new version before the end of 1990. In tile meantime, In-

ference would like to arrange an evaluation copy so that they could evaluate the current

version of ART-Ada.

Attendees were:

• .Jack Dean, MDAC, OMA

• Dennis Lawler, NASA, ED, ISB

• Don Woods, MDAC, Advanced Automation

• Steven Domingue, MDSS-SSD

• Steven Jowers, MDSSC-ESD

• Colin Clark, MDSSC-ESD

• Robert Faltisco, MDSSC-SSD

• Deborah Conley, MDSSC-SSD

III.6 Conclusion

In general, DAA was well received by all attendees. In particular, DAA focuses on the

cooperation between onboard systems and ground-based ones, which is not currently

well addressed by the Space Station Freedom Program. It is not easy to achieve

cooperative processing between onboard systems and ground systems. We believe that

it is technically feasible, but it is difficult because it involves multiple organizations.

Currently, onboard systems (e.g. OMA) are handled by Work Package contractors while

ground-based systems (e.g. OMGA) are handled by MSC contractors. If an architecture

like DA_A is adopted as a general framework for the Space Station, it could be used as a

"glue" between different contractors.

47

-- A DISTRIBUTEDAGENTARCHITECTUREFORREAL-TIMEKNOWLEDGE-BASEDSYSTEMS

Many flight-related software components will reside in the SSCC becauseonboard
computing resourcesare very limited. We believe that ground-based flight-related
software systemsshould operate in the sameenvironment asonboard flight software for
two reasons:

• If ground-basedsoftware componentsare crucial for flight, it should be con-
sidered as part of the flight software. The sameverification and validation
standard that is normally applied to onboard flight software should also be
applied to thesesoftware components.

• If ground-basedsoftware componentsare destined to migrate to the Station,
it would be essential for the SSCCto have the sameoperating environment
asthe onboard environment.

Becauseof these reasons,the Ada mandate should be imposed on the development of
any new ground-basedflight-related software componentsaswell asonboard software.

Another important issue raised by DAA is the assessmentof risks caused by com-
munieation delays. Average communication delay may be lessthan a minute in normal
operating conditions, which is not significant. On the other hand, there might be longer
delays causedby "blind spots" in the communication networks or by hardware failures
in the transmission systems. NASA should assessany risks of having catastrophic
failures on the Station due to the absenceof support from ground-basedsystems during
thesecommunication delays.

48

